Randomized Signal Classes for Evaluating the Performance of Wavelet Shrinkage Denoising Methods

نویسنده

  • Carl Taswell
چکیده

Previous simulation experiments for the comparison of wavelet shrinkage denoising methods have used fixed signal classes defined by adding instances of noise to a single test signal. New simulation experiments are reported here with randomized signal classes defined by adding instances of noise to instances of randomized test signals. As expected, significantly greater variability in the performance of the denoising methods was observed. Statistically valid comparisons must be conducted with respect to this variability. Use of randomized, rather than fixed, signal classes should yield more realistic and meaningful results.∗

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods

With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...

متن کامل

Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods

With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

A new time-scale adaptive denoising method based on wavelet shrinkage

The wavelet shrinkage denoising approach is able to maintain local regularity of a signal while suppressing noise. However, the conventional wavelet shrinkage based methods are not time-scale adaptive to track the local time-scale variation. In this paper, a new time-scale adaptive denoising method for deterministic signal estimation is presented, based on the wavelet shrinkage. A class of smoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999